If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+10n-2=0
a = 2; b = 10; c = -2;
Δ = b2-4ac
Δ = 102-4·2·(-2)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{29}}{2*2}=\frac{-10-2\sqrt{29}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{29}}{2*2}=\frac{-10+2\sqrt{29}}{4} $
| -3(x+6)+5=7(x+2)+2 | | 4x=2=9x-13 | | 4(7v+9)=-16 | | -0,3x=3 | | 24=6(x+1)+18 | | -35-7z=6(8z+3) | | 2(x-4)+3=3x+5-x-12 | | x+945=1080 | | -9(8f-3)=16+5f | | 15+x^2=21 | | 2n^2+8n-19=0 | | 9+3n=-21 | | 9x+3=8x-2 | | -6+8(1+7k)=21 | | 23x=283 | | 84=-7k | | -19x+-38=-19x+19 | | 3t-1=23-t | | -3|d|=-18 | | 8x+3x-5=72 | | 3x-2-5=3x | | 155x+130=80x | | X/3-1/8=5-3/4x | | 7/8(-32-48x)+36=2/3(33x-18)-10x | | 6x-4+3-8=51 | | 3+3(2x-4)=9 | | 7x+3=66-2x | | 12x+12=2x+52 | | 4x^2-10x+30=0 | | -24=2x=-32 | | 2(x+6)=2*6+1/3x | | Y+7x=-8 |